Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling Jiazhen Pan¹, Suprosanna Shit¹, Özgün Turgut¹, Wenqi Huang¹, Hongwei Bran Li², Nil Stolt-Ansó¹, Thomas Küstner³, Kerstin Hammernik^{1,4}, Daniel Rueckert^{1,4} jiazhen.pan@tum.de, suprosanna.shit@tum.de

¹ Klinikum Rechts der Isar, Technical University of Munich, Germany. ² Department of Quantitative Biomedicine, University of Zurich, Switzerland ³ Medical Image And Data Analysis, University Hospital of Tübingen, Germany. ⁴ Department of Computing, Imperial College London, UK

Conventional MR Reconstruction with Image-domain Denoising

MR Scanner

Typical Works:

MR Reconstruction via k-Space Interpolation (work on data without any corruption)

MR Scanner

Data Acquisition

Undersampled k-Space

Typical Works:

Reconstructed MR Images

Denoising in image domain

Data

DcCNN [Schlemper TMI2018] VN-Net [Hammernik MRM18] CRNN [Qin TMI2018] MoDL [Aggarwal TMI2018]

Accelerated Cardiac MR Images

Major Limitations:

 \mathcal{F}^{-1}

1. Lack of generalizability due to artifacts-specific priors/regularizers 2. Artifacts distort and/or obscure tissues of interest before denoising kick-in 3. Work on the corrupted data

MR Images

GRAPPA [Griswold MRM18] **SPIRiT** Interpolation [Lustig MRM2010] ALOHA [Han TMI2019] RAKI [Akçakaya MRM19] . . .

> Interpolated k-Space

Limitations of current k-Space Interpolation methods: 1. Limited Flexibility due to Calibration Signals 2. Only Local Operators 3. No Representation of the Sampled Data

In this work, we proposed k-Space interpolation method -- k-GIN (Btw. after GRAPPA, RAKI, Caipirinha, SAKE etc., We have one more alcoholic beverage in MR Reconstruction) 😇

Gist of the work:

- **First usage of MAE** in MR reconstruction and in k-space
- **Global** Interpolation based on **learned representation** from the sampled data
- **More robust** than image domain-based methods at different acceleration rates

Some details

- k_x is used as channel dimension
- Iterative refinement applied on every plane (x-y, y-t, x-t)
- High-Dynamic Range (HDR) loss handle the large magnitude difference in k-space

BioNedia

Reconstruction Results (training at R4, infer at R4 and R8 (unseen)) Outlook

Enable Multi-coils setting 1.

- Flexible input 2.
- Computational efficient model 3.
- Downstream task e.g. disease classification, cardiac volume regression 4. and segmentation

midas.lab